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Abstract

Teen birth rates have evidenced a significant decline in the United States over the past few 

decades. Most of the states in the US have mirrored this national decline, though some reports 

have illustrated substantial variation in the magnitude of these decreases across the U.S. 

Importantly, geographic variation at the county level has largely not been explored. We used 

National Vital Statistics Births data and Hierarchical Bayesian space-time interaction models to 

produce smoothed estimates of teen birth rates at the county level from 2003–2012. Results 

indicate that teen birth rates show evidence of clustering, where hot and cold spots occur, and 

identify spatial outliers. Findings from this analysis may help inform efforts targeting the 

prevention efforts by illustrating how geographic patterns of teen birth rates have changed over the 

past decade and where clusters of high or low teen birth rates are evident.
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1. Introduction

Teen childbearing is associated with negative health, social, and economic outcomes for both 

the mothers and infants (Ventura et al., 2014). Infants born to teen mothers are more likely to 

be born preterm, and to die within the first year of life compared to infants born to older 

mothers (Ventura et al., 2014). Moreover, the economic burden of teen childbearing to the 

public has been estimated to total 9.4 billion dollars annually in the U.S. (The National 

Campaign to Prevent Teen and Unplanned Pregnancy, 2013). At a national level, teen birth 

rates have evidenced a significant decline over the past few decades. In 2014, there were 

24.2 births for every 1,000 adolescent females (15–19 years of age), a decline of nearly 60 

percent over the past 25 years (Hamilton et al., 2014; Martin et al., 2013). Most of the states 

in the U.S. have mirrored this national decline, though some reports have illustrated 
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substantial variation in the magnitude of these decreases across the U.S. with declines 

ranging from 52% to 71% (Ventura et al., 2014). In addition, states in New England have 

historically had the lowest teen birth rates in the U.S., while several southern states (e.g., 

Arkansas, Mississippi, Oklahoma) have teen birth rates higher than the national average 

(The National Campaign to Prevent Teen and Unplanned Pregnancy, 2013; National Center 

for Health Statistics, 2014; Ventura et al., 2014).

Although many studies and reports have reported large-scale geographic patterns, spatial 

patterns at the county-level have not been much explored. Describing how counties with 

high or low teen birth rates cluster geographically may aid effort s to further reduce teen 

birth rates in specific areas of the U.S. Moreover, identifying counties that represent spatial 

outliers can inform future research seeking to better understand what factors might be 

driving greater success in reducing teen birth rates in some areas as compared to others. 

Many factors have been implicated in explaining the declines in teen birth rates such as 

increased contraceptive use and shifts toward more effective methods of contraception, delay 

in sexual initiation, the effects of the economic downturn, and the impact of various federal, 

state, and local public health programs and interventions to prevent teen pregnancy (Romero 

et al., 2015; Ventura et al., 2012). The objectives of this analysis were: to examine whether 

teen birth rates show evidence of clustering, to identify where hot and cold spots occur 

(groups of counties with extremely high or low teen birth rates), and to identify spatial 

outliers (counties with high or low teen birth rates surrounded by counties with dissimilar 

values), over the study period.

2. Methods

2.1. Data and estimates

Data on the number of live births for women aged 15–19 were extracted from the National 

Vital Statistics Birth Data Files for the years 2003–2012, (National Center for Health 

Statistics, 2003–2012). These data were then aggregated to the county level to provide a 

count of births to women 15–19 years of age for each county and year. The denominators to 

calculate teen birth rates were obtained from intercensal and postcensal population estimates 

of the number of females aged 15–19 years residing within each county over the same time 

period. These population denominators were extracted from the files containing intercensal 

and postcensal bridged-race population estimates provided by the National Vital Statistics 

System (National Vital Statistics System, 2009). There were 929 counties where there were 

fewer than 20 births to women 15 –19 years of age in 2003 and 1156 counties in 2012. 

Direct estimates are typically suppressed in counties with fewer than 20 cases in the 

numerator due to concerns about the stability and reliability of the estimates. To address 

these problems, we employed small area estimation methods to produce stable county-level 

estimates of teen birth rates from 2003 –2012. These methods are described elsewhere 

(Khan et al., 2018) and are reviewed briefly here. More detail can be found in the 

supplemental appendix.

Hierarchical Bayesian space-time interaction models were employed to produce county-level 

estimates of the teen birth rates for each year (Lawson, 2013). These models accounted for 

spatial and temporal dependence along with space time interaction terms to generate county-
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level estimates of teen birth rates for each year, 2003 –2012. These models included 

covariates related to county-level income and poverty, such as: per capita income, percent of 

county in poverty, unemployment rate, education, and racial/ethnic composition, proportion 

of foreign born residents, education level, measured at different time points. In addition to 

these covariates- which were significantly associated with teen birth rates at the county level, 

the number of family planning and Title X clinics by county, based on data provided by the 

Guttmacher Institute (Kost, 2014), were initially included in the models but subsequently 

removed due to the negligible association with teen birth rates at the county level. These 

models borrow strength across counties and time to produce stable estimates of teen birth 

rates at the county level, addressing problems due to data sparsity and allowing for further 

examination of geographic and temporal patterns.

2.2. Model

Let yit = counts of teen births in county i and year t, and nit = counts of teen population in 

county i and year t. Then,

yit ~ Binomial (nit, pit); i = 1,…, m counties and t = 1,…, T years, where pit = probability of 

teen births in county i at time t (Lawson, 2013; Khan et al., 2018).

The convolution model is:

logit(pit) = α0 + a1i * yeart + Xi′ γ + ui + νi + ψit. The components in the convolution 

model correspond to:

1. logit link function log (pit/(1 − pit)).

2. α0, an intercept.

3. time trend term a1i
* yeart

4. Xi′γ, where Xi: is the ith row of the covariates matrix and γ is a vector of 

regression parameters.

5. spatial random effects ui by county to model strong spatial autocorrelation i = 1,

…, m counties.

6. non-spatial random effects vi by county to model residual spatial autocorrelation 

that were not dealt with by our spatial random effects, ui, i = 1,…, m counties.

7. space-time interaction term ψit, a random effect where ψit is a function of its 

past values, ψi,t−1, plus an error term.

Parameters under (5) are modeled via normal conditional autoregressive priors (CAR) 

(Besag et.al, 1991). Parameters under (6) are modeled via normal conditional priors. 

Parameters under (7) are modeled via Type II random walk interaction (Knorr-Held and 

Rasser, 2000), which is included to account for any residual spatiotemporal dependence or 

variation that is not captured by the spatial or temporal main effects. The values for a given 

county in a given year depend upon the values observed for that county in the prior year plus 

a residual (Knorr-Held and Rasser, 2000; Lawson, 2013).
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The predicted county-level teen birth rates obtained from the best model were merged with 

US Census Tiger/Line files and mapped using ArcGIS 10.1 (E.S.R. Institute, 2011).

3. Spatial statistical tools

Having obtained estimates from the models described above, several spatial statistical tools 

were implemented to examine spatial clustering and outliers.

3.1. Global index of spatial autocorrelation – Moran’s I

Global indexes of spatial autocorrelation were used to assess the similarity, or spatial 

dependence, across counties with respect to teen birth rates. In other words, are counties 

with similar teen birth rates located close together or are teen birth rates randomly 

distributed across the US?

High values of the Moran’s I and corresponding z-scores greater than 1.96 indicate that there 

is statistically significant clustering across the counties (p < 0.05). Low values of Moran’s I 

and z-scores less than −1.96 indicate that there is statistically significant regularity (i.e., 

nearby counties have very different TBRs). Moran’s I can be thought of as a spatially 

weighted form of Pearson’s correlation coefficient (Waller and Gotway, 2004).

Global tests of autocorrelation such as Moran’s I do not indicate where clusters of high or 

low teen birth rates might occur. Thus, local indicators of spatial autocorrelation (LISA) are 

needed.

3.2. Local indicators of spatial association – Getis-Ord Gi* and Anselin Local Moran’s I

We used two LISAs to examine clusters of counties with high or low TBRs. First, the Getis-

Ord Gi* statistic, which generates a z-score and corresponding p -value for each county, 

where z-scores greater than 1.96 indicate a significant “hot spot” and z-scores lower than 

−1.96 indicate a significant “cold spot” (p < 0.05).

Additionally, we used Anselin Local Moran’s I to examine spatial outliers. This tool 

identifies spatial clusters of counties with high or low TBRs as well as spatial outliers. 

Spatial outliers refer to counties with values of TBRs that are discrepant from the 

neighboring counties. For example, a county with a particularly high TBR might be 

surrounded by counties with low TBRs. The local Moran’s I index (I) is a relative measure 

and can only be interpreted within the context of its computed z-score or p-value (E.S.R. 

Institute, 2011). Based on these local Moran’s I values and associated p-values, each county 

can then be classified by cluster/outlier type (COType). Counties fall into one of 5 groups 

(E.S.R. Institute, 2011):

• Not part of a cluster;

• Hot spot: High TBR and surrounded by a cluster of high TBRs (HH = “high-

high”);

• Cold spot: Low TBR and surrounded by a cluster of low TBRs (LL = “low-

low”);
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• Spatial outlier: High TBR surrounded primarily by low TBRs (HL = “high-

low”);

• Spatial outlier: Low TBR is surrounded primarily by high TBRs (LH = “low-

high”).

3.3. Conceptualization of spatial relationships: defining a spatial weights matrix

There are several ways to define ωij, the binary spatial weight between county i and j. We 

explored two methods: K nearest neighbors and Delaunay triangulation. A general rule of 

thumb for K nearest neighbors is to evaluate each county in the context of a minimum of 

eight neighbors (E.S.R. Institute, 2011). If K (the number of neighbors) is 8, then the eight 

closest neighbors to the target county will be assigned positive nonzero weights, while 

counties outside of this boundary will receive a weight of zero. Sensitivity analyses were 

conducted using the Delanuay triangulation method of conceptualizing spatial relationships, 

where Voronoi triangles are drawn between county centroids and counties are defined as 

neighbors if they share a triangle edge. Delaunay triangulation is therefore a data driven 

approach to assigning the number of neighbors for a given county, in contrast to assigning an 

arbitrary number such as eight. Sensitivity analyses using this method of assigning spatial 

weights produced similar results to the 8-nearest-neighbors approach, thus we present only 

the latter. Distance based weighting schemes were not implemented because this approach 

leads to nearby counties being assigned very small weights, making it difficult to discern 

broader regional patterns.

4. Results

The predicted county-level teen birth rates for the years 2003 –2012 ranged from 6.1 –125.7 

per 1000 in 2003 to 3.8–130.1 per 1000 in 2012. Figs. 1 and 2 depict the predicted teen birth 

rates across US counties for the years 2003 and 2012. Approximately 8.3 percent of counties 

had teen birth rates less than 20 per 1000 in 2003, while 14.6 percent of counties had teen 

birth rates less than 20 per 1000 in 2012.

4.1. Clustering of teen birth rates – Moran’s I

The Global Moran’s I and the corresponding z-score for the years 2003 –2012 suggest that 

there was significant spatial autocorrelation of county-level teen birth rates (p < 0.05) for all 

the years. In other words, across the US, counties with similar teen birth rates tend to locate 

closer to one another than we would expect by random chance during the period 2003 to 

2012.

4.2. Hot and cold spots – Getis-Ord Gi*

Significant clusters of counties with high (hot spots) and low (cold spots) teen birth rates, as 

assessed by the Getis-Ord Gi* tool for the years 2003 and 2012 can be seen in Figs. 3 and 4. 

In 2003, 693 counties were part of a hot spot, and 760 counties were part of a cold spot. In 

2012, the number of counties identified as within a hot spot declined to 633 and the number 

of counties that contributed to a cold spot decreased to 678.
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4.3. Spatial outliers – Anselin Local Moran’s I

Anselin Local Moran’s I confirmed the significant hot and cold spots identified by the Getis 

Ord G * tool. In 2003, hot spots appeared across counties in the South such as southern 

Arizona and New Mexico, Arkansas, Florida, Georgia Louisiana, Mississippi, West Texas, 

and Appalachia. Cold spots were seen in Iowa, Michigan, Minnesota, Montana, North and 

South Dakota, Nebraska, New England, and Wisconsin. Generally, these patterns remained 

similar in 2012. The notable changes were in Arizona and counties across the South East 

(e.g., Alabama, Tennessee, Florida), which no longer represented a hot spot. Additionally, 

several counties were categorized as spatial outliers. These patterns can be seen for 2003 and 

2012 in Figs. 5 and 6. Of note, in 2003 there were 30 counties identified as the HL (“high-

low”) type of spatial outlier, where the given counties evidenced high teen birth rates but 

were surrounded by a cold spot. Conversely, there were 14 counties identified as the LH 

(“low-high”) type of spatial outlier, where teen birth rates were low, but the county was 

surrounded by a hot spot. In 2012, these numbers were relatively stable with 24 HL counties 

and 16 LH counties, respectively. In 2003, the HL counties were located in the states of 

Alabama, Arizona, Arkansas, California, Florida, Georgia, Idaho, Illinois, Indiana, Iowa, 

Kentucky, Louisiana, Maryland, Michigan, Missouri, Nebraska, Washington, and West 

Virginia. In 2012, HL counties appeared in these same states with the exception of four 

states that no longer contained HL counties: Illinois, Iowa, Kentucky and Virginia. In 2003, 

the LH counties were located in the states of Mississippi, North Carolina, North Dakota, 

Oregon, South Carolina, South Dakota, Tennessee, Texas, and Virginia. In 2012, the LH 

counties were located in these same states, with the exception of South Carolina and 

Virginia, which no longer contained LH counties. Additionally, two states, Pennsylvania and 

Wyoming, contained LH counties in 2012, but did not in 2003.

5. Discussion

There is substantial geographic variation in teen birth rates across the U.S. Results of global 

tests of spatial autocorrelation (i.e., Moran’s I) confirm that teen birth rates exhibit spatial 

dependence. In other words, across the entire U.S., counties with high teen birth rates tend to 

locate closer together than we would expect at random. Conversely, counties with low teen 

birth rates also tend to cluster together geographically. Using local indicators of spatial 

association (i.e., Getis Ord Gi *), we were able to identify several hot and cold spots across 

the U.S. that represent clusters of counties with significantly high or low teen birth rates. 

The geographic pattern and change over time seen in the hot spots may reflect, in part, the 

wide differences in teen birth rates by race and Hispanic origin, as well as variations and 

changes in the composition of the teen populations by race and Hispanic origin across 

counties. A previous study of standardized teen birth rates by state in 2012 (Ventura et al., 

2014) which controlled for compositional differences, nevertheless still showed regions of 

high and low rates. Even after accounting for racial/ethnic composition of the states, this 

prior report found that teen birth rates were highest in the southern states and lowest in the 

North Eastern states (Ventura et al., 2014), suggesting that there are other drivers of 

geographic patterns beyond racial/ethnic composition, such as area-level socioeconomic 

factors and other social determinants of health and health disparities. (Romero et al., 2016) 

The hierarchical Bayesian models employed in this analysis to predict TBRs included 
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several county-level factors related to sociodemographic characteristics, socioeconomic 

factors, and racial/ethnic composition. (Khan et al., 2018) These factors were significantly 

related to TBRs at the county-level, adding to the body of literature describing the 

importance of social determinants of health in relation to teen childbearing and related 

disparities (Penman-Aguilar et al., 2013; Romero et al., 2016).

Consistent with prior research, we found higher teen birth rates across counties in the 

southern U.S. and lower teen birth rates in New England counties during the study period, 

2003 to 2012. However, within those regions and states generally noted as having high or 

low teen birth rates, there is considerable variability at the county level, which crosses state 

borders in some cases. For example, clusters of high teen birth rates were seen for several 

counties along the border between west Texas and southeastern New Mexico, counties in 

Arkansas, Louisiana, Mississippi and Tennessee falling along the Mississippi river, some 

Appalachian counties in Kentucky and West Virginia, as well as counties along the border 

between southern Georgia and northern Florida. Similarly, cold spots emerged crossing state 

boundaries between Idaho and Montana, the Dakotas, Nebraska, Minnesota, Wisconsin and 

parts of Michigan, as well as nearly all of the New England states and into Pennsylvania, 

Maryland and northern Virginia. In this analysis, the presence and persistence of hot spots 

and cold spots are particularly noteworthy. Specifically, 695 counties were part of a hot spot 

in 2003, and 91.4% remained a hot spot in 2012. Conversely, 756 counties were part of a 

cold spot in 2003 and of these, 89.94% remained part of a cold spot in 2012.

This study has a few limitations. First, there may be variation in teen birth rates at the sub-

county level, but this variation cannot be explored using data from the National Vital 

Statistics System. Second, the hierarchical Bayesian models used to generate the predicted 

annual teen birth rates at the county level were extremely computer intensive. The results of 

this analysis examining global and local indicators of spatial autocorrelation may be 

influenced by model error from the original hierarchical Bayesian model that was used to 

generate the smoothed county-level teen birth rates. Finally, the classification of counties as 

hot and cold spots or spatial outliers is based on their teen birth rate values relative to other 

counties in a given year. Thus, the stability of these specific categorizations does not reflect 

the magnitude of declines in teen birth rates across the U.S., but only the relative stability in 

the ‘ranking’ of counties from high to low. The strength of this analysis is the combination 

of a detailed geographic focus (at the county-level), over a substantive period of time. To 

date, most of the work on estimating teen birth rates and assessing geographic variation has 

been done at the state level (Ventura et al., 2014). Examinations of teen birth rates at the 

county level have relied on direct estimates aggregated over several years, and are limited by 

the inability to show county-level estimates based on fewer than 20 births in the numerator 

due to concerns about the reliability and stability of the direct estimates. (Romero et al., 

2016) This study is the first study to describe county-level variation in teen birth rates over 

the entire U.S., by using estimates derived from Hierarchical Bayesian models and applying 

spatial statistical tools to identify hot spots, cold spots, and spatial outliers in teen birth rates.
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6. Conclusions

In sum, there is substantial geographic variation in teen birth rates across the U.S. Counties 

with high and low teen birth rates tend to cluster together more than we would expect by 

chance. Describing how counties with high or low teen birth rates cluster geographically 

may aid effort s to further reduce teen birth rates in specific areas of the U.S. Findings may 

be used by public health practitioners and other officials to inform decisions related to the 

development and implementation of teen pregnancy prevention effort s by facilitating better 

targeting of resources toward areas in greatest need. Additionally, results related to spatial 

outliers may inform future research aimed at understanding what may be contributing to 

lower or higher than expected TBRs (i.e., based on dissimilar values in adjoining counties) 

in specific counties identified as a HL or LH spatial outlier. Despite significant declines in 

teen birth rates at the national level, there are many counties and groups of counties across 

the US where teen birth rates remain high. Identifying counties that represent spatial outliers 

can inform future research seeking to better understand what factors might be driving greater 

success in reducing teen birth rates in some areas as compared to others. Given differences 

in teen birth rates across racial/ethnic subpopulations and specific age ranges such as 15–17 

and 18–19, future research might look at county-level birth rates for women aged 15–17 and 

18–19 and for race groups such as non-Hispanic white, non-Hispanic black, and Hispanic 

women aged 15–19 to examine hot spots and spatial outliers which can provide additional 

insight about geographic patterns and potential drivers of these patterns and trends.

References

Besag J, York J, Mollié A. Bayesian image restoration, with two applications in spatial statistics. Ann 
Inst Stat Math. 1991; 43:1–20.

E.S.R. Institute. ArcGIS desktop: release 10. Redlands CA: Environmental Systems Research Institute; 
2011. Available from: http://resources.arcgis.com/en/help/main/10.1/index.html#/
Modeling_spatial_relationships/005p00000005000000/

Hamilton, BE., Martin, JA., Osterman, MJ., Curtin, SC. Preliminary data for 2014. Hyattsville, MD: 
National Center for Health Statistics; 2014. National Vital Statistics Report; p. 64p. 6

Khan, D., Rossen, LM., Brady, H., Erin, D., He, Y., Wei, R. Spatiotemporaltrends in teen birth rates in 
the U.S., 2003–2012. J R Stat Soc Ser A. 2018. http://onlinelibrary.wiley.com/doi/10.1111/rssa.
12266/full

Knorr-Held L, Rasser G. Bayesian detection of clusters and discontinuities in disease maps. 
Biometrics. 2000; 56:13–21. [PubMed: 10783772] 

Kost, K. Guttmacher county-level contraceptive needs and services data. New York: The Alan 
Guttmacher Institute (AGI); 2014. 

Lawson, A. Bayesian disease mapping hierarchical modeling in spatial epidemiology. Chapman and 
Hall, CRC; 2013. 

Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Mathews T. Births: final data for 2011. Nat Vital 
Stat Rep. 2013; 62:1–90.

National Center for Health Statistics. Nation at a glance: declining teen birth rates by state. 2014. 
Available from http://www.cdc.gov/nchs/features/nation_oct2014/nation_at_a_glance_oct2014.htm

National Center for Health Statistics; 2003–12. Natatlity data, 2003–2012, Geographic detail (all 
counties) file

National Vital Statistics System. Bridged-raceintercensal population estimates. 2009. Available from 
https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htmUse

Khan et al. Page 8

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://resources.arcgis.com/en/help/main/10.1/index.html#/Modeling_spatial_relationships/005p00000005000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Modeling_spatial_relationships/005p00000005000000/
http://onlinelibrary.wiley.com/doi/10.1111/rssa.12266/full
http://onlinelibrary.wiley.com/doi/10.1111/rssa.12266/full
http://www.cdc.gov/nchs/features/nation_oct2014/nation_at_a_glance_oct2014.htm
https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htmUse


Penman-Aguilar A, Carter M, Snead MC, Kourtis AP. Socioeconomic disadvantage as a social 
determinant of teen childbearing in the u.s. Public Health Rep. 2013; 128(Suppl 1):5–22. http://
www.cdc.gov/mmwr/preview/mmwrhtml/mm5306a6.htm. 

Romero, L., Pazol, K., Warner, L., et al. Morb Mortal Wkly Rep. 2015. p. 64Available from http://
www.cdc.gov/mmwr/pdf/wk/mm64e0407.pdf

Romero L, Pazol K, Warner L, et al. Reduced disparities in birth rates among teens aged 15–19 years 
united states, 2006–2007 and 2013–2014. Morb Mortal Wkly Rep. 2016; 65(16):409–14.

The National Campaign to Prevent Teen and Unplanned Pregnancy Teen birth rate comparison. 50 
state comparison story. 2013; 2013 Available from: https://thenationalcampaign.org/data/compare/
1701. 

The National Campaign to Prevent Teen and Unplanned Pregnancy. Counting it up: The public costs of 
teen childbearing: Key data. Available from https://thenationalcampaign.org/resource/counting-it-
key-data-2013

Ventura, SJ., Curtin, SC., Abma, JC., Henshaw, SK. National Vital Statistics Reports 2012. Hyattsville, 
MD: National Center for Health Statistics; 2012. Estimated pregnancy rates and rates of pregnancy 
outcomes for the united states, 1990–2008. 

Ventura, SJ., Hamilton, BE., Mathews, TJ. National Vital Statistics Reports 2014. Hyattsville, MD: 
National Center for Health Statistics; 2014. National and state patterns of teen births in the united 
states, 1940–2013. 

Waller, L., Gotway, C. Applied spatial statistics for public health data. New York: John Wiley and 
Sons; 2004. 

Appendix

This section is adapted from Khan et al. (2018).

The convolution model is:

where pit is the probability of teen birth for county i at time t is modeled using a logit link. 

The county level covariates accounting for the term Xi′γ, in the convolution model were 

obtained from Area Resource Files (The National Campaign to Prevent Teen and Unplanned 

Pregnancy, 2013). The covariates included various socioeconomic indicators (e.g., per capita 

income, percent of county in poverty, unemployment rate) and demographic variables (e.g., 

racial composition, proportion of foreign born residents, education level), measured at 

different time points. To account for collinearity within the predictors and to reduce and 

transform data in the presence of multicollinearity, a Principal Component Analysis (PCA) 

was conducted. The PCA, using a varimax rotation, indicated that three three components 

were sufficient as they accounted for 88% of the total variation. The three components 

largely reflected county level income and poverty, education, and percent non-Hispanic 

white, respectively. More details are available from National Center for Health Statistics 

(2014).

Prior assumptions

The overall intercept term, α0 is assigned an improper flat prior. The prior specifications for 

all other components in the model are as follows:

• α0 ~ dflat () (A.1)

Khan et al. Page 9

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5306a6.htm
http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5306a6.htm
http://www.cdc.gov/mmwr/pdf/wk/mm64e0407.pdf
http://www.cdc.gov/mmwr/pdf/wk/mm64e0407.pdf
https://thenationalcampaign.org/data/compare/1701
https://thenationalcampaign.org/data/compare/1701
https://thenationalcampaign.org/resource/counting-it-key-data-2013
https://thenationalcampaign.org/resource/counting-it-key-data-2013


• Prior for a1 ~N(0, τa1) (A.1)

where, τa1 ~IG(0.01, 0.01), (IG:Inverse Gamma)(A.2)

• ψi,t ~N(ψi,t−1, τψ) (A.3),

where ψi, 1 ~ N (0, τψ) (A.4), and

τψ ~ IG (0.01, 0.01)(A.5).

The prior for Type II random walk interaction is defined above and can be 

regarded as a form of residual [(Knorr-Held and Rasser, 2000; Lawson, 2013)].

• γ~N(0, τγ) (A.6), where

τγ ~ IG (0.01, 0.01) (A.7)

Intrinsic Conditionally Autoregressive Prior (CAR) prior for ui|u−i:

•  (A.8) termed as correlated heterogeneity (variability), 

where,

u−i = (u1, u2, …, ui−1, ui+1, …, um)

 (A.9)

δi: neighborhood of ith region

ωij = 1 for counties i and j that are deemed neighbors otherwise 0.

We used the K-nearest neighbors approach to define the spatial relationships 

between counties. The eight closest neighbors to the target county were assigned 

weights ωij = 1, all other counties are assigned weights ωij = 0.

τu : is the variance. τu ~ IG (0.01, 0.01) (A.10)

• Prior for vi: vi ~ N (0, τv) (A.11)

termed as uncorrelated heterogeneity (variability), where

τv : is the variance

τv is assigned the prior ~ IG (0.01, 0.01) (A.12)

Prior Assumptions: Non-Spatial Model βi = (β1i, β2i)′ (A13)

 (A14)

Hyper prior for μ is assumed as  (A15)

The inverse of Y is assigned a Wishart prior with R as a diagonal matrix and 

degrees of freedom = 2.

Khan et al. Page 10

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inverse of  (A16)
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Fig. 1. 
Model-based estimates of teen birth rates (per thousand) for 2003.
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Fig. 2. 
Model-based estimates of teen birth rates (per thousand) for 2012.
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Fig. 3. 
Hot and Cold Spots in Teen Birth Rates, 2003. Values represent z-scores from the Getis Ord 

Gi * analysis; 1.65 corresponds to P < 0.10, 1.96 corresponds to P < 0.05, 2.58 corresponds 

to P < 0.01. Negative z-scores indicate cold spots, while positive z-scores indicate hot spots.

Khan et al. Page 14

Spat Spatiotemporal Epidemiol. Author manuscript; available in PMC 2017 September 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Hot and Cold Spots in Teen Birth Rates, 2012. Values represent z-scores from the Getis Ord 

Gi * analysis; 1.65 corresponds to P < 0.10, 1.96 corresponds to P < 0.05, 2.58 corresponds 

to P < 0.01. Negative z-scores indicate cold spots, while positive z-scores indicate hot spots.
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Fig. 5. 
Clusters and spatial outliers in teen birth rates, 2003.
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Fig. 6. 
Clusters and spatial outliers in teen birth rates, 2012.
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